

Applied sampling, preparation and determination protocol of microplastic contamination in HUSRB/23R/12/089 project

Kiss János LUPS Chemist, Engineer

Why microparticles are difficult to study

Microparticles are very small and occur in complex environments, making them hard to prepare and analyse reliably.

- Mixed with many other substances
- •High risk of error or misidentification
- •Require strict laboratory control

Contamination Risk

External contamination is one of the biggest problems in microparticle analysis.

- •Fibres from clothing and air dust
- Plastic residues from tools
- •Risk of false positives

Sample loss during preparation

Particles are so small that they often get lost during handling or filtration.

- Adhesion to surfaces and tools
- •Retention inside the filter housing
- Reduced sample accuracy

Challenges with filter materials

The filter must be stable but should not interfere with the analysis.

- •Release of fibres into the sample
- •Own IR absorption bands
- •Background noise in spectra

Heterogenity of samples

Microparticles are diverse in size, shape, and composition, which complicates analysis.

- Broad size distribution
- Mixed polymers and morphologies
- •Poor representativeness after filtration

Chemical pre-treatment

Organic matter must be removed carefully to avoid damaging the particles.

- Oxidative or enzymatic digestion
- •Risk of polymer degradation
- Altered surface chemistry

Fenton Reaction

$$Fe^{2\oplus} + H_2O_2 \longrightarrow Fe^{3\oplus} + HO \cdot + OH^{\bigcirc}$$
Ferrous Hydrogen peroxide Ferric Hydroxyl radical Hydroxyl radical Fe^{3\oplus} + H_2O_2 \longrightarrow Fe^{2\oplus} + HOO \cdot + H^{\oplus}

Micro-FTIR: size limitation

Micro-FTIR cannot measure the smallest microparticles and nanoplastics.

- •Resolution ~10–20 μm
- •Small particles remain undetected
- Underestimation of particle numbers

Good neighbours creating common future

Background and interferences

Background signals from filters and matrices can obscure microparticle spectra.

- •Filter substrate interference
- •Residual organic matter
- Overlapping absorption bands

Rank	Component Name	Area %	Count	Library	Color
1	Water vapor- without CO2	7.02	33	HR Georgia State Forensic Drugs	

Particle morphology

Shape and thickness influence spectral quality and measurement success.

- •Irregular shapes scatter IR light
- Curved surfaces distort spectra
- •Thick particles block transmission

Spectral interpretation

Interpreting spectra is limited by incomplete libraries and particle alterations.

- Missing polymers and additives
- •Blends and weathered particles
- Uncertain identification

#	Component Name	Match %	χ (μm)	γ (μm)	Area (µm²)	Library	Particle thumbnail
PA1.114	POLYPROPYLENE HOMOPOLYMER #1	79.63	-805	-10306	16834	HR Polymer Additive s and Plasticiz ers	

Representativeness

Only a fraction of particles can be analysed, which limits conclusions.

- •Limited particle number per sample
- •Non-representative particle selection
- •Reduced statistical significance

	Rank	Component Name	Area %	Count	Library	Color	
	1	POLYSTYRENE STANDARD, TYPICAL MW 200,000	35.13	15	HR Aldrich Polymer s		
í	2	POLYPROPYLENE #1	12.76	5	HR Polymer Additive s and Plasticiz ers		
, co	3	POLYVINYL CHLORIDE #3	8.59	2	HR Polymer Additive s and Plasticiz ers		
4	4	Tygon polymer R-3603	1.46	1	HR Nicolet Sampler Library		
E.	5	Poly(ethylene terephthalate)	1.36	1	HR Hummel Polymer and Additive s		
6	5	Vinyl Gloves	0.96	1	Commo n Material s		
	7	Water vapor- without CO2	0.59	1	HR Georgia State Forensic Drugs		

	#	Component Name	Match %	χ (μm)	Υ (μm)	Area (µm²)	Library	Particle thumbnail
	PA1.1	POLYSTYRENE STANDARD, TYPICAL MW 200,000	90.41	19270	2919	47494	HR Aldrich Polymer s	
	PA1.2	POLYVINYL CHLORIDE #3	76.40	19704	1577	46703	HR Polymer Additive s and Plasticiz ers	
	PA1.3	Unidentified	0.00	20362	1703	41870		
	PA1.4	Unidentified	0.00	17854	1976	41207		
20 PM	PA1.5	POLYPROPYLENE #1	78.73	19491	2187	25918	HR Polymer Additive s and Plasticiz ers	9
	PA1.6	POLYSTYRENE STANDARD, TYPICAL MW 200,000	79.56	20169	3440	22484	HR Aldrich Polymer s	
	PA1.7	POLYSTYRENE STANDARD, TYPICAL MW 200,000	78.62	20069	3530	19586	HR Aldrich Polymer s	
9	PA1.8	POLYSTYRENE STANDARD, TYPICAL MW 200,000	78.20	19164	3767	18887	HR Aldrich Polymer s	0

Outlook and future directions

Despite the challenges, these methods provide valuable insights, and improvements are ongoing.

- Better contamination control protocols
- Expanded spectral databases
- Automation and complementary methods

Thank you for your attention!

